NATIONAL INSTITUTE OF AEROSPACE

A New Model in Collaborative Research and Graduate Education

Presented to NASA's Turning Goals into Reality (TGIR) Conference

June 2003

Outline of Briefing

- Origin and Mission of NIA (Bob Whitehead)
- Organization (Bob Whitehead)
- NIA Research Programs (Bob Lindberg)
- NIA Education and Outreach Programs (Bernie Grossman)

Atmospheric Sciences

Langley-Research Center

Founded in 1917
First civil aeronautical research laboratory

Programs \$700M total FY 02 Facilities

\$4 billion investment

People
2400 Civil Servants
1400 Contractors

Why did NASA Create NIA?

Objective:

To create a strategic partner to conduct leading edge research in collaboration with Langley Research Center, create new knowledge, and build a better-educated workforce

Motivation:

To foster greater collaboration with academia to more fully leverage expertise both inside and outside NASA

What is NIA?

- An Independent Private Non-profit Institution
- Leading Research Universities and AIAA Foundation
 - Six Founding Universities
 - Three Affiliate Universities
- Research and Graduate Education in Hampton Roads
- Established as a Strategic Partner with LaRC

The NASA-NIA Collaborative Partnership

Cooperative Agreement Establishes a New Strategic Partnership

- NIA/University/LaRC as Strategic Partners
 - Collaborative R&D Teams
 - Shared Resources and Shared Risks
 - Joint Ownership of Intellectual Property
 - Education for the Next Generation of Aerospace Leaders
- Foundation for Collaboration with Industry and Other Government Agencies

NIA Functional Requirements

1. Aerospace and atmospheric sciences research

3. Commercialization of new intellectual property

2. Graduate education in science and engineering

4. Promotion and outreach

Hampton Roads Center North Master Plan

- Less than two miles from LaRC front gate
- Last tract owned by City of Hampton to create economic growth
- Master Plan: 235 acres
 - Business
 - Retail
 - Residential
- Research Campus Highlighted: 65 acres
- Phase 1: 8 acres

Research Campus Site Plan

- Campus Potential: 450,000 sq ft
- NIA
 Headquarters
 (Phase I):
 60,000 sq ft

Main Elevation - Phases I and II

National Institute of Aerospace

NIA Organization

Cooperative Agreement Research Scope

- Aerospace Systems, Concepts, and Analysis
- Aerodynamics, Aerothermodynamics, and Acoustics
- Structures and Materials
- Airborne Systems
- Atmospheric Sciences and Sensor System Technologies
- Atmospheric Chemistry and Radiation Science
- Planetary Capture and Entry Technologies

Langley Professor Program

 Established by NASA Cooperative Agreement and Focused on Key Multidisciplinary Growth Areas

University Research Program

 Conducted by Faculty and Students at Member Universities in Collaboration with NASA Research Staff

Resident Research Program

 Directly Funded by NASA Research Organizations and Conducted by NIA Resident Staff

3rd Party Research Program

- Sponsored by other Government Agencies
- Conducted by Faculty, Staff, Langley Professors, NASA Research Staff, Students, and/or Industry Partners

Industrial Affiliates Program

 Conducted by NIA, Faculty, and/or NASA Research Staff in Collaboration with, and Funded by, Industrial Partners

Recruiting is Underway for Langley Professors

- Earth System Science
- Advanced Aerospace Systems Architecture
- High Confidence Computational Systems
- Quantum/Molecular Materials Design for Sensors
- Multifunctional Design
- Smart, Adaptive Aerospace Vehicle Technology and Concept Development

Langley Professor Recruitment Process

- NASA and NIA Have Chosen Research Focus Areas that Hold the Best Promise for Growth Over the Next Decade
- One Full-time Appointment at Each Founding Member University
- Experience Commensurate with the Level of Tenured Full Professor
- Each Member University Follows Its Own Search Procedures
- Applicants Can Apply to All, Some, or Just One Member University
- Universities Will Seek Concurrence of Partners Before an Offer is Made
- Positions Have Been Advertised (see www.nianet.org) and Will Remain Open Until All Six Positions are Filled

Industrial Affiliates Program

- NIA Seeks Industry Partners for:
 - Joint Pursuit of External Research Opportunities
 - Collaboration on Industry-sponsored Research
 - Participation in NIA's Graduate Education Program
- Industrial Affiliates Benefits Can Include:
 - Teaming with NIA and LaRC on Competitive Opportunities
 - Collaborative IR&D with NIA and LaRC for Industry's Benefit
 - Access to NIA Intellectual Property (IP) and Shared Ownership of Jointly Developed IP
 - Short Course Offerings, Graduate Education for Employees, etc.
 - Staff Exchange Between Industry and NIA
 - Participation on NIA's Science Advisory Board

Collaborative Research and Education Environment

Leverage unique experimental facilities and laboratories wherever they are located.

Provide comprehensive curricula to a diverse student population wherever the students reside.

NIA Graduate Education Program

To provide a truly outstanding graduate education program in engineering and the sciences based on an unprecedented collaboration between six major research universities

- M.S. and Ph.D. offered from all six full-partner universities
 - Enrollment at one of the member universities
 - All residency requirements fulfilled in Hampton, Virginia
 - Up to 50% of coursework from other member schools
- Collaborative credit sharing enables availability of large suite of courses including advanced 'niche' courses at the Ph.D. level.
- On-site faculty presence including distinguished Langley Professors and Liaison Professors from each university, adjunct faculty from NASA, and on-site researchers.
- Large suite of courses available through local instruction and advanced distance learning.

NIA Graduate Students

- Full-time students at NIA: students for Langley and Liaison Professors, visiting students
- Full-time "Rising Star" fellowship students
 - Research on-site at NASA LaRC
 - Graduate education at NIA
 - Attract top US graduate students: \$26K (stipend, fellowship, travel) + tuition
- Part-time graduate students at NASA: civil servants, contractors
- Part-time graduate students at local industry and in the community

NIA Graduate Degree Programs (Fall 2003)

Georgia Tech: Aero Eng, Mech Eng

North Carolina A&T: Mech Eng (Spring 2004)

North Carolina State: Aero Eng, Mech Eng

University of Maryland: Aero Eng

University of Virginia: Mech & Aero Eng., Materials Sci & Eng,

Elect & Computer Eng, Systems and Info

Eng, Eng Physics

• Virginia Tech: Aero Eng, Ocean Eng, Eng Mech,

Materials Sci & Eng, Mech Eng

Future Degrees Programs at NIA:

Meteorology, Atmospheric Chemistry, Computer Science, Applied Math

More than 50 courses offered, including:

Georgia Tech: Advanced Design Methods

Vibrations of Continuous Systems

North Carolina State: Acoustics Radiation

Principles of Mechatronic Control

University of Maryland: Helicopter Aerodynamics

Smart Structures

• University of Virginia: Electrical, Optical & Magnetic Properties of

Materials

Intro to Systems Engineering

Virginia Tech: Advanced Aero/Hydrodynamics

Theory of Elasticity

Additional Education & Outreach Activities

- Short Courses
- Seminar Series
- Summer Visitors
- Workshop Program
- Outreach Program
 - Focused on K-16
 - Leveraged with NASA Education, Space Grants, University Partners
 - Summer Teacher Program

"Emerge as a National Leader in the Resurgence of Aerospace Innovation in the U.S.A."

www.nianet.org

Backup Material

 Investigations in integrating atmospheric sciences (chemistry, dynamics) with other Earth system disciplines (solar interaction, ocean & land sciences) to improve understanding & prediction of changes inwhole Earth ecosystem

Advanced Aerospace Systems Architecture

- Innovative approaches to systems analysis to develop and integrate life-cycle and risk methodologies, economic models and reliability assessment for combined systems
- Create and use tools to address cost, operations, safety and risk for advanced aeronautical and space system architectures

High Confidence Computational Systems

- Innovative research in the fields of reliability, integrity, fault tolerance, and verification/validation for computer based systems that perform critical functions in aerospace vehicles
- Emphasis on machine intelligence, biocomputing, information management, human/machine interactions, and autonomous systems
- Responsive to requirements driven by environmental effects (lightning, electromagnetic interference, in-space radiation, and internal systems-generated thermal and vibration environments)

Quantum/Molecular Materials Design for Sensors

- Engineering concepts and design for in situ and remote sensing applications in the entire electromagnetic spectrum
- Quantum/molecular designs for laser sources, optics, antennas, fiber optics lasers and tuning elements and novel detector architectures
- Sensing principals including mechanical, thermal, chemical, magnetic, biological, fluidic, optical, ultrasonic and mass

Multifunctional Design

- Innovative research leading to development of aerospace design elements that perform multiple functions
- Develop new materials/structural concepts or innovative combinations of existing concepts that would be applied to aerospace vehicles and platforms
- Innovative analytical models and methods that simulate the physical response of candidate concepts
- Integrate models and methods into design tools

Smart, Adaptive Aerospace Vehicle Technology and Concept Development

- Multidisciplinary research to enable efficient, multi-point vehicles providing performance on demand and operating in an integrated airspace vehicle environment
- Integrated research in such areas as active flow and noise control, unsteady fluid mechanics, adaptive structural concepts and distributed flight controls
- Exploration of bio-inspired approaches to controls and autonomous capabilities
- Potential application of bio-mimetic, nanostructured, multifunctional materials